DOSAGEM PROGRAMADA DE MATÉRIA-PRIMA PARA OS DIVERSOS PROCESSOS DA INDÚSTRIA

Reinaldo Galo Febrônio Alves

Reinaldo.alves@fatec.sp.gov.br Faculdade de Tecnologia de Garça — Fatec

Prof. Dr. Edio Roberto Manfio

prof.ediorobertomanfio@gmail.com Faculdade de Tecnologia de Garça

Prof^o Ms. Ildeberto de Genova Bugatti

bugattifatec@gmail.com Faculdade de Tecnologia de Garça

Abstract. This article aims to develop a device that can control, precisely, the dosage of raw material that has granular or powder form, for the most varied applications in industry, for maximum efficiency, precision and control to consecutive portions or mixture of components of a recipe. The study was developed through bibliographic research and prototype construction, applying the knowledge in the areas of programming language, electronics, mechanics and electricity

Resumo. Este artigo tem como objetivo o desenvolvimento de um equipamento que possa controlar, de maneira precisa, a dosagem de matéria-prima que tenha forma granular ou de pó, para as mais variadas aplicações na indústria, visando a máxima eficiência em precisão e controle, para porções consecutivas ou mistura de componentes de uma receita. O estudo foi desenvolvido por meio de pesquisa bibliográfica e construção de protótipo, aplicando os conhecimentos nas áreas de Linguagem de Programação, Eletrônica, Mecânica e Eletricidade.

1 Introdução

A competitividade entre as indústrias, para ganhar espaço e manter-se no mercado é muito grande, os lucros geralmente são reduzidos e a diferença entre o sucesso e o insucesso pode estar na eficiência da sua linha de produção. As indústrias necessitam reduzir mão de obra, para reduzir o custo e, ao mesmo tempo, melhorar a qualidade de seus produtos.

Em se tratando de indústrias que utilizam como matéria prima de seus produtos grãos ou pós, encontra-se a necessidade de equacionar volumes ou quantidades desses materiais com eficiência para que o produto final tenha uniformidade e exatidão do consumo da matéria prima, proporcionando o planejamento da produção e de seus custos, além de um padrão de qualidade.

Analisando as indústrias que precisam quantificar o seu produto acabado em pequenas frações para o consumidor final, também se faz necessário uma exatidão na pesagem de cada fração, pois além de não exceder o peso determinado para evitar prejuízos, impede que falte produto naquela porção pré-determinada.

Essas necessidades motivaram o desenvolvimento de um sistema que permita a pesagem de frações de um produto ou de componentes de uma mistura, de forma

precisa e sucessiva, e que funcione de maneira autônoma, eliminando interferência e mão de obra humana.

2 Pesagem

2.1 Célula de Carga

O dispositivo que realiza a operação de pesagem é um sensor chamado célula de carga (Figura 1). Trata-se de uma barra de alumínio, com perfil projetado para sofrer deformação conforme o peso atua sobre ela, e a medição dessa deformação, feita por um extensômetro.

Segundo Ripper Neto (1997), extensômetros resistivos medem deformação específica e seu princípio de funcionamento está baseado no fato que a resistência elétrica de um condutor varia proporcionalmente à sua deformação linear. Tais sinais elétricos passam por um processo de amplificação e conversão, para que o dispositivo de controle possa receber e processar essa informação.

Figura 1 – Célula de Carga Fonte: weightech@weightech.com.br

2.2 Módulo conversor amplificado

Como as células de carga não oferecem dados com grandezas elétricas na faixa de leitura da grande maioria dos equipamentos de controle, é necessário um amplificador de sinal e um conversor análogo/digital. O Módulo Conversor HX711 (Figura 2) foi desenvolvido pela empresa AVIA Semiconductor (AVIA, 2016) para fazer a conversão dos valores analógicos da resistência das células de carga em dados digitais por meio do circuito ADC de 24-bit. Tal conversor possui também um amplificador de sinal que oferece grande precisão.

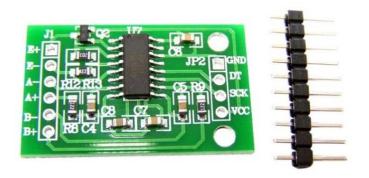


Figura 2: Módulo Conversor Amplificado HX711 Fonte: AVIA SEMICONDUCTOR datasheet HX711

3 Dosagem

A dosagem depende da movimentação controlada do produto que está em um reservatório até o compartimento no qual será pesado, onde se encontra o sensor que lê o peso. O sensor transfere a informação para o controlador e este, por sua vez, realiza os comandos de quando acrescentar matéria prima até atingir o peso desejado e então parar o sistema.

O trabalho é realizado por uma rosca transportadora (Figura 3) que, montada sobre dois mancais fixos, ao girar sobre seu eixo, exerce o deslocamento pelas suas espiras de forma continuada e uniforme, dependendo apenas, da velocidade de giro de seu eixo (DEPARTAMENTO de Engenharia Mecânica, 2016). O acionamento é realizado por um motor elétrico comandado pelo controlador.

Figura 3: Ilustração de uma rosca transportadora realizando a dosagem

Fonte: do autor

4 Acionamentos

Um motor é necessário para realizar o trabalho de giro na rosca transportadora, aumentando ou diminuindo o volume transportado de acordo com sua velocidade. No

sistema construído, foi utilizado um motor de corrente contínua com conjunto de redução (Figura 4), também empregado em limpadores de para-brisas de automóveis.

Figura 4: motor da rosca transportadora
Fonte: disponível em: http://br.bosch-automotive.com/pt/internet/parts/parts_and_accessories_2/electronics_and_accessories/electric_motors/wiper_motors/wiper_motors_1.html.

Um segundo motor – servomotor (Figura 5) - é utilizado para realizar o acionamento de uma comporta, responsável pelo despejo do material após pesado, ou seja, toda vez que se pesa uma porção, após a rosca transportadora parar, esse acionamento abre a comporta e essa porção é liberada para o seguimento do processo. Com o compartimento de pesagem vazio, inicia-se a pesagem de outra fração.

Figura 5: Servo motor da comporta Fonte: disponível em: <<u>http://www.ett.co.th/product/1602.ht</u> <u>ml</u>>.

5 Controle

O controle de dosagem é feito por um microcontrolador que recebe as informações da célula de carga, as processam e, de acordo com uma programação existente em sua memória, toma as decisões mandando o comando para os atuadores realizarem o trabalho.

Um microcontrolador é configurado com um programa, criado para uma finalidade específica, que recebe todas as informações e instruções necessárias para realizar operações matemáticas ou comparações que, juntamente com a leitura das entradas de dados, normalmente vinda de sensores, executa o seu programa e controla suas saídas, podendo acionar atuadores que farão o trabalho ou simplesmente exibirão informações decorrentes do seu programa (MONK, 2013).

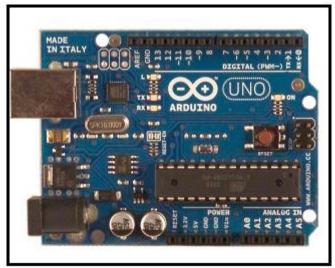


Figura 6: Arduino UNO (Atmega 328)
Fonte: Disponível em: https://www.arduino.cc/en/Main/ArduinoBoardUno.

O microcontrolador utilizado é um Atmega 328 (ARDUINO, 2016a; 2016b), aplicado na plataforma Arduino (Figura 06), que faz uso de linguagem de programação baseada na linguagem C (MIZRAHI, 2008).

6 Protótipo

6.1. Montagem

O protótipo está montado com a seguinte disposição:

- a) estrutura metálica onde está montado o sistema
- b) reservatório para a matéria-prima que será dosada
- c) rosca transportadora localizada na base inferior do reservatório, responsável por conduzir o material para dentro do compartimento de pesagem
- d) motor da rosca transportadora
- e) o compartimento de pesagem que recebe a fração a ser pesada
- f) a célula de carga que faz a leitura do peso conforme o compartimento é alimentado pela rosca transportadora

- g) o servo motor, ainda no compartimento de pesagem, responsável por abrir e fechar a comporta de saída
- h) a comporta que libera a fração de material já pesado.

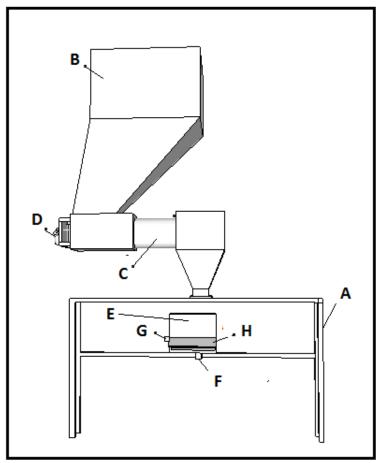


Figura 7: descritivo da montagem do protótipo Fonte: do autor

A Figura 7 representa de modo bastante fiel a disposição física dos componentes no conjunto (PROVENZA, 1991) que compõe o protótipo testado e apresentado na Fatec Garça.

6.2 Funcionamento

Ao iniciar o ciclo de pesagem, o programa faz a tara do peso sobre a célula de carga, desprezando o peso dos componentes que compõem o compartimento de pesagem. Em seguida o motor da rosca transportadora é acionado, iniciando o transporte do material para dentro do compartimento de pesagem.

A leitura do peso é realizada a todo instante e informado ao microcontrolador, que compara com o peso desejado, previamente programado. Ao atingir o peso, o motor da rosca transportadora é desligado e, na sequência, a comporta de saída é aberta para que a porção pesada seja liberada e uma nova porção possa ser pesada. Um novo ciclo se inicia automaticamente.

Os valores da pesagem são mostrados em tempo real durante a pesagem por um display de cristal líquido que integra a parte eletrônica do sistema, dando a informação de saída para que o operador possa acompanhar o processo e sua precisão. O display

utilizado é dotado de fundo azul, intensidade de brilho variável e resolução de 2 linhas por 16 colunas (Figura 08).

Figura 8: display de cristal líquido Fonte: QIU. Disponível em: http://www.martaduino.com.br/displays-

7 Resultados

Os resultados do protótipo foram além das expectativas iniciais, pois o sistema funcionou em um período de teste aproximado de 2 horas ininterruptas e as medições foram altamente precisas. Quanto maior a fração pesada, maior a precisão do sistema, que ficou com a variação máxima de 1 (um) grama, independente do tamanho da fração. Essa margem de erro para uma porção de 50 gramas, representa um erro de até 2%, porém quando analisados em porções maiores, os resultados são cada vez melhores, como está representado na Tabela 1.

Tabela1: margem de erro do

Sistema	
	Margem de erro
Peso (g)	(%)
50	2
100	1
500	0,2
1000	0,1
10000	0,01

Fonte: do autor

8 Considerações finais

Este artigo tem como objetivo mostrar a possibilidade do controle nos processos de fabricação, os benefícios que uma linha de produção automatizada pode acrescentar para o sucesso e a padronização de um produto, e principalmente a aplicação dos conhecimentos do Tecnólogo em Mecatrônica Industrial no processo de fabricação, visando o trabalho de conclusão do curso.

O projeto desenvolvido com recursos limitados e próprios, apesar de um custo relativamente baixo, comparado com o custo de equipamentos já industrializados, com resultados excelentes em relação à precisão de pesagem, e muito ainda a ser melhorado.

Os próximos avanços deste projeto será a inserção de mais um dosador, o que proporcionará a dosagem multicomponentes para misturas industriais, a implementação de uma interface de comunicação, onde os valores definidos de pesagem poderão ser alterados a qualquer hora pelo operador do sistema, e também o aprimoramento dos dispositivos que alimentam a balança, visando uma eficiência ainda melhor para as frações pesadas.

Referências

ARDUINO. *Arduino Uno e Genuino Uno*. Disponível em:https://www.arduino.cc/en/Main/ArduinoBoardUno. Acesso em: 21 mai. 2016a.

ARDUINO. *Pinagem Arduino Uno R3*. Disponível em: http://bodgarage.repofy.com/?p=959>. Acessado em: 21 mai. 2016b.

AVIA Semiconductor. 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales. Disponível em: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf>. Acesso em 23 mai.2016.

DEPARTAMENTO de Engenharia Mecânica – UFBA. *Transporte de Granéis, transportadores helicoidais*. Disponível em: helicoidais. Disponível em: helicoidais. Acesso em 23 mai. 2016.

ELETROELETRÔNICA – Educação profissional .*Controle e Automação Industrial*. Disponível em: http://www.trajanocamargo.com.br/wp-content/uploads/2012/05/Controle_e_-Automacao_Industrial_II.pdf>. Acesso em 20 mai. 2016.

MIZRAHI, Victorine Viviane. *Treinamento em Linguagem C.* 2 ed. São Paulo: Pearson, 2008.

MONK, Simon. *Programação com Arduino começando com Sketches*. Tradução: Anatólio Laschuk. Porto Alegre: Bookman, 2013.

QIU – *Specifications of LCD module ADM 1602k-NSW-FBS/3.3v.* Disponível em: https://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-3.3v.pdf>. Acesso em 23 mai. 2016.

RIPPER NETO, Arthur Palmeira. Vibrações Mecânicas. Rio de Janeiro: e-papers, 2007.

PROVENZA, Francesco. Desenhista de máquinas. 46° ed. São Paulo: 1991.